Synaptic augmentation contributes to environment-driven regulation of the aplysia siphon-withdrawal reflex.
نویسندگان
چکیده
This research shows that short-term synaptic plasticity can play a critical role in shaping the behavioral response to environmental change. In Aplysia, exposure to turbulent environments produces a stable reduction in the duration of the siphon-withdrawal reflex (SWR) and the responsiveness of siphon motor neurons. Recovery takes >1 min after a brief (10 sec-5 min) exposure but <1 min after a long (10 min) exposure. Here we demonstrate that (1) in-turbulence and post-turbulence phases of regulation depend on different cellular processes and (2) the post-turbulence phase of regulation is mediated by augmentation (AUG), an activity-dependent form of short-term synaptic plasticity. In reduced preparations (tail, siphon, and CNS), we show that treatment with 100 microm d-tubocurarine has no effect on in-turbulence regulation but blocks up to 90% of post-turbulence regulation, indicating that these phases of regulation are mediated by distinct cellular process. We then show that (1) turbulence induces activity in L30 inhibitory interneurons, (2) this activation produces AUG that lasts 1 min after a brief exposure to turbulence, and (3) manipulations that attenuate L30 AUG also attenuate regulation after brief turbulence. We also found that long (10 min) exposures to turbulence do not produce a post-turbulence phase of regulation because L30 activity declines over the course of a long turbulence exposure, leading to the decay of AUG before turbulence offset. Our results demonstrate a specific behavioral function of AUG and show how interactions between cellular processes can confer temporal sensitivity in the network regulation of behavior.
منابع مشابه
The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia.
Plasticity at central synapses has long been thought to be the most likely mechanism for learning and memory, but testing that idea experimentally has proven to be difficult. For this reason, we have developed a simplified preparation of the Aplysia siphon withdrawal reflex that allows one to examine behavioral learning and memory while simultaneously monitoring synaptic connections between ind...
متن کاملThe contribution of facilitation of monosynaptic PSPs to dishabituation and sensitization of the Aplysia siphon withdrawal reflex.
To examine the relationship between synaptic plasticity and learning and memory as directly as possible, we have developed a new simplified preparation for studying the siphon-withdrawal reflex of Aplysia in which it is relatively easy to record synaptic connections between individual identified neurons during simple forms of learning. We estimated that monosynaptic EPSPs from LE siphon sensory...
متن کاملHeterosynaptic facilitation of tail sensory neuron synaptic transmission during habituation in tail-induced tail and siphon withdrawal reflexes of Aplysia.
In cellular studies of habituation, such as in the gill and siphon withdrawal reflex to tactile stimulation of the siphon of Aplysia, a mechanism that has emerged as an explanation for response decrement during habituation is homosynaptic depression at sensory neurons mediating the behavioral response. We have examined the contribution of homosynaptic depression to habituation in sensory neuron...
متن کاملSerotonin mimics tail shock in producing transient inhibition in the siphon withdrawal reflex of Aplysia.
Tail shock-induced modulation of the siphon withdrawal reflex of Aplysia has recently been shown to have a transient inhibitory component, as well as a facilitatory component. This transient behavioral inhibition is also seen in a reduced preparation in which a cellular reflection of the inhibitory process, tail shock-induced inhibition of complex EPSPs in siphon motor neurons, is observed. The...
متن کاملFunctional uncoupling of inhibitory interneurons plays an important role in short-term sensitization of Aplysia gill and siphon withdrawal reflex.
Attempts to explain learning-associated potentiation of synaptic transmission in model systems such as withdrawal reflexes in the mollusk Aplysia or the hippocampus of vertebrates have focused on the mechanisms by which transmitter release is increased in the principal elements of the circuit. Increased transmission in neuronal networks such as the gill and siphon withdrawal reflex (GSWR) of Ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 37 شماره
صفحات -
تاریخ انتشار 2003